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1 Bayesian Graphical Models (BGM)

1.1 Introduction of Graphical Models

Denoting with C, M , E, and P the four genomics features of copy number, DNA methylation,

mRNA expression, and protein expression, we apply a Bayesian graphical model1 to learn the

dependence structure of these features through a graph. The vertices of the graph represent the

features, and the presence or absence of edges indicates the conditional dependence or indepen-

dence between the features, respectively. For example, an edge between M and E and a lack of

edge between C and E implies methylation-controlled transcription, which is robust to copy num-

ber changes. In other words, the mRNA expression is sensitive to methylational variation but not

copy number variation.

Exploring conditional independence among a set of random variables is a classical statistical

inference problem. Bayesian inference enables a stochastic exploration of the graphical space by

introducing priors on the graph itself to regularize the otherwise unstable estimation. We consider

Markov random fields (MRF) models2 , and introduce binary latent indicators of the presence of

genomics variations. We define an MRF as a pair G = (V, E), where V is a set of vertices and E is

a set of undirected edges. The vertices correspond to the variables, in our case genomic features,

C, M , E, or P for a single gene. The edges in E are a subset of {{i, j}, i 6= j 2 V }. A path is

defined as an ordered set of vertices (i0, i1, . . . in) such that {ik�1, ik} 2 E for k = 1, . . . , n.

For TCGA applications, instead of using directed graphs, MRFs that do not consider direc-

tionality are suitable for two reasons. First, there are not time-course data in TCGA thus virtually

eliminating the possibility of performing formal statistical inference based on directed graphs. Sec-

ond, if needed, most edge directionalities can be easily deduced from biological knowledge. For

example, an edge between C and E of the same gene implies that the copy number variations

(CNVs) of that gene affect the mRNA expression of the gene, i.e., C ! E.
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1.2 Methods

1.2.1 Probability Model

For each gene, data are arranged in an S⇥T matrix Y = [yit] where rows i represent the genomic

features of the gene, columns t represent different biological samples, and each element yit rep-

resents the measurement of each feature for each sample, i = 1, . . . , S and t = 1, 2, . . . , T . The

proposed model introduces latent trinary indicators zit 2 {�1, 0, 1} with interpretation as under-,

regular and over-expression of the corresponding measurement as follows:

zit =

8
>><

>>:

�1 abnormally low measurement,

0 normal measurement ,

1 abnormally high measurement.

Using zit we apply the mixture model3 for yit, given by

(yit � µi) | zit,✓i ⇠ I[zit = �1]U(yit | �ki�, 0) + I[zit = 0]N(yit | 0, �2
i )

+I[zit = 1]U(yit | 0, ki+), (1)

where I[·] is the indicator function, µi is the random effect of feature i, U(A) denotes a uniform

distribution over the set A, and N(· | µ, �2
) denotes a normal distribution with mean µ and vari-

ance �2. In words, we assume a mixture model with uniform, normal and uniform components

corresponding to under-, regular and over-expression. The vector ✓i = (µi, �2
i , ki�, ki+) collects

all the other parameters.

We subsequently convert the trinary variable zit to a binary variable eit with p(zit|eit = 0) =

��1(zit), and

p(zit = 0|⇡i, eit = 1) = ⇡i, p(zit = 1|⇡i, eit = 1) = 1� ⇡i.

This conversion is needed to set up the following graphical model.

Denote V = {1, . . . , S} the set of S vertices representing S genomic features. Recall that

a graph is a pair G = {V, E} where E is a set of undirected edges {i, j}, i, j 2 V . A graph G
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is used to describe the conditional independence structure of a set of variables indexed by V , for

example the binary indicators {eit, i 2 V }. The absence of an edge {i, j} indicates conditional

independence of eit and ejt given the remaining variables ekt, k 6= i, k 6= j. Any joint probability

model p(e1t, . . . , eSt) that respects the dependence structure G can be written as4 :

p(et | �, G) = p(0 | �, G)⇥ exp

8
<

:

SX

i=1

�ieit +
X

{i,j}2V ;i<j

�ijeitejt

9
=

; ,

(2)

where et = (e1t, . . . , eSt) and � = (�1, . . . , �S, �12, . . . , �S�1,S). For instance, we have � =

(�1, �2, �3, �12, �23, �13) when S = 3. Coefficients �ij are non-zero only when the corresponding

edge is included in the graph. Model (2) is known as the autologistic model.

An alternative scheme called centered parametrization5�6 improves mixing of posterior sim-

ulation and simplifies prior specification. The centered version is used in the form of

p(et | �, G) = p(0 | �, G)⇥ exp

8
<

:

SX

i=1

�ieit +
X

{i,j}2V ;i<j

�ij(eit � ⌫i)(ejt � ⌫j)

9
=

; ,

(3)

where ⌫i = exp(�i)/{1 + exp(�i)}.

The joint model factors as

p(Y , z, e,⇡,✓,�, G) = p(Y | z,✓)p(z | e,⇡)p(e | �, G)p(✓)p(� | G)p(G). (4)

We introduce the priors p(✓), p(� | G), and p(G) next. Let Ga(a, b) denote a gamma distribution

with mean a/b. We assume conditionally conjugate priors

µi ⇠ N(0, ⌧µ),
1

�2
i

⇠ Ga(��,��),

1

ki�
⇠ Ga(�ki� ,�ki�),

1

ki+
⇠ Ga(�ki+ ,�ki+),

�i, �ij
indep.⇠ N(0, �2

�), ⇡i ⇠ U(0, 1).
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Lastly, we define a model p(G). Let G0 = (V, E0) be a prior guess of the dependence

structure. For genomic inference, G0 can be often easily elicited. For example, one could connect

the edge between C and E, since CNV is biologically known to be positively related to gene

expression. Therefore, G0 woud be a graph with three vertices C, M , and E and an edge set E0.
Knowing G0, the first option of the prior of G is based on the number of changes to G0 by assuming

a geometric kernel

p(G) / ⇢d(G,G0), (5)

where d(G,G0) = |E
T

Ec
0 | + |Ec

T
E0| and ⇢ 2 (0, 1). This prior setting imposes less weight on

graphs that are more distant from G0 and the weights decreases exponentially when the distance

d increases. The prior (5) works well for large graphs with say, > 10 vertices. In real data

applications for TCGA, we specify G0 according to biological knowledge: we assume an edge

between C and E, M and E, and E and P for the same gene. We did not assume any other edges

in the prior graph G0. Therefore, G0 reflects the biological belief that copy number and DNA

methylation affect gene expression, and gene expression and protein expression are dependent.

We assign parameter ⇢ different values according to the size of the graph. In particular, ⇢ = 0.9

for graphs with 3 nodes, 0.8 for graphs with 4-5 nodes, 0.3 for graphs with 6 nodes, and 0.1 for

graphs with 7+ nodes. We perform extensive simulations to evaluate the model when ⇢ take these

values; results of the simulation are presented in Section1.3.

1.2.2 Markov Chain Monte Carlo Simulations

We carry out posterior inference for model (4) using Markov chain Monte Carlo (MCMC) simula-

tions. Each iteration of the MCMC scheme includes the following transition probabilities,

p(e | Y ,⇡,↵,✓,�, G), p(z | Y ,↵, e), p(⇡ | z),

p(✓ | Y , z,↵), p(� | e, G), p(G | e,�).

We start by generating e from its complete conditional posterior. Following the update of e,

we generate values for z from complete conditional posterior p(z | Y ,↵, e). If eit = 0, the
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update is deterministic, zit = �1. If eit = 1, the update requires a Bernoulli draw for zit = 0

versus zit = 1. The update of parameters ✓ is straightforward. Resampling G and the regression

coefficients � could be challenging in large graphs, essentially because of the difficult evaluation

of the normalization constant p(0 | �, G) in (3)1.

1.2.3 Posterior Inference Using False Discovery Rates

Statistically, owing to our fully model-based inference using posterior probabilities, we can easily

assess the noise associated with the genomic data. This is a major advantage of our proposed

Bayesian modeling approach over other algorithm-driven methods. Denoting � a generic symbol

for a probability of interest, and adopting the methods introduced by Newton et al.7 and Müller et

al.8, we compute the posterior expected false discovery rate (pFDR) for a given cutoff �0, given by

pFDR(�0) =

PS
i=1

P
j>i(1� ˆ�ij)I(ˆ�ij  �0)

PS
i=1

P
j>i(

ˆ�ij  �0)
,

where I(·) is the indicator function, ˆ�ij is a posterior estimate of �ij . Different cutoff values �0

can be used for FDR control such that pFDR < p0 for a desirable rate p0.

1.3 Simulation Study

1.3.1 A Small Study

Here we examined the performance of the graphical models with three simulated data sets, each

with T = 350 samples and S = 3, 4, 5 features, respectively. Hence, the number of vertices

in a graph was between 3 and 5. For each simulation, a true graph G was first generated. For

each pair of vertices {i, j}, we generated the edge with probability 0.5. For each imputed edge

{i, j}, we generated values of �ij from N(µ1, 0.52), with µ1 ⇠ U(�4, 4). We generated �i, the

autologistic intercept in (3) from N(µ2, 0.52), and µ2 ⇠ U(�0.4, 0.4). Then, we generated e

for T = 350 samples. Since p(zit | eit = 0) = ��1(zit), p(zit = 0|⇡i, eit = 1) = ⇡i, and
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p(zit = 1|⇡i, eit = 1) = 1 � ⇡i, we first generated ⇡i ⇠ U(0.2, 0.8) and then generated z.

Furthermore, we set µi = 0, �i = 0.316, ki� = 4, and ki+ = 4 for each feature i. The hyper-

parameters were ⌧µ = 1, �� = 2,�� = 0.1, �k+ = 11,�k+ = 40, �k� = 11,�k� = 40, and

�� =

p
10.

In Fig. S1, the plots in the left panel present the three simulated true graphs. Black edges

and red edges represent positive and negative interactions, respectively. For instance, in data set 1,

features 1 and 2 are positively related, and features 1 and 3 are negatively related. Features 2 and

3 are conditionally independent given feature 1, i.e., �23 = 0 in the autologistic model (3).

We implemented the proposed graphical model to compute the posterior estimates of param-

eters for each simulated data set. The posterior estimates were obtained through MCMC sampling

with 10,000 iterations, of which the first 6,000 were discarded as burn-in (thinning every 10 itera-

tions). We calculated the posterior inclusion probability qij for each possible edge {i, j}, defined

as

qij =
1

B

X
I({i, j} 2 E)

substituting the edge set E of the imputed graph for each iteration of the MCMC. Here B is the

number of MCMC samples kept for analysis. We obtained the posterior estimated graph ˆG by

thresholding, based on a criterion {qij > q0}, using the posterior inclusion probability qij for each

edge. The threshold q0 was chosen so that the posterior expected false discovery rate pFDR(q0) 
0.01. We also reported parameter estimates of regression coefficients ¯� = E(� | Y ), the posterior

mean for the autologistic coefficients. Fig. S1 plots the posterior estimated graph for the simulated

data. The number next to each edge represents either the true value (left panel) or the posterior

mean �ij’s (right panel). We can see that the estimated graph match the simulation truth for all

three datasets, with similar estimated values of the �’s.

Since graph G is modeled as a random variable, we also reported the inference r = P (G =

G0|data), where G0 is the simulation truth. For the three data sets r = 0.534, 0.52, and 0.236,

respectively. The last r value is smaller since the true graph in that last simulation had more edges,

thus increasing the complexity in the estimation. In other words, the less sparse the true graph is,

the less powerful the inference.
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(b) Data set 2
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(c) Data set 3

Figure S1 The simulation truth versus the estimated graph for three simulated data sets. Edge

colors black and red represent positive and negative relationships, respectively. The number next

to each edge represents either the true value (left graph) or the posterior mean (right graph) of the

autologistic coefficients �ij’s. The estimated graph based on posterior inference is identical to the

simulation truth.
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The sign of �ij has an intuitively appealing interpretation related to the effect of the j-th

feature on the probability of presence of i-th feature, keeping the other feature fixed. Let e�ij =

e\{eit, ejt}. It can be easily shown that �ij is the log odds ratio of eit and ejt through simple

algebra, where �ij > 0 implies that p(eit = 1 | ejt = 1, e�ij) > p(eit = 1 | ejt = 0, e�ij). Due to

this nice interpretation, we use the magnitude of the � values as a measure for the line thickness

when reporting the posterior networks in Zodiac.

1.3.2 A Large Study

Building on the encouraging results of the small simulation study, we conducted a large study

involving many data sets and configurations of ⇢. For a fixed number of vertices ranging from 3 to

8 and a value of ⇢ 2 {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} we generated 20 simulation data

sets based on the scheme in the previous subsection. Fig. S2 summarizes the false nondiscovery

rates (FNR) and false discovery rates (FDR) across the 20 data sets for each graph size and ⇢

value. Also, the number of samples was 500, 650, 800, 950, 1,100, and 1,250 for graphs with 3 –

8 vertices, respectively. Examining the results, we chose selected ⇢ values reported in Subsection

1.2.1 for Zodiac runs.

1.3.3 Comparison to Partial Correlation

We have explained the differences and advantages of the Bayesian graphical models versus stan-

dard correlation-based inference. Here, we further show that the proposed Bayesian graphical

models are different and arguably more powerful than the partial correlation, which also computes

the association of two random variables in the presence of other random variables. We considered

a special case in which we had four features and the true graph was a rhombus, as in data set 2 in

the simulation: feature 1 connected with 2, 2 connected with 3, 3 connected with 4, 4 connected

with 1. There were no edges between 1 and 3, or between 2 and 4 as shown in Fig. S1 (data set 2).

After implementing the proposed graphical model, the posterior estimated graph was the same as

the true graph, and the posterior estimates of � were close to the truth.
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To compare with inference based on partial correlation, we used R function PCOR.TEST to

infer conditional independence between two variables. According to the simulation truth, features

1 and 3 were conditionally independent given both 2 and 4, but dependent conditional on either

2 or 4, but not both. Our graphical model obtained the right inference, providing the identical

graphical presentation (Fig. S1, data set 2). However, using partial correlation we would conclude

that features 1 and 3 were conditionally independent given feature 2 (P value < 0.01), and also

conditionally independent given feature 4 (P value < 0.01). Therefore, partial correlation analysis

failed to capture the true conditional independence structure of the graph, and provided wrong

estimates of the conditional dependence relationship involving the four vertices.

(a)

(b)

Figure S2 Summary of simulation results. Each boxplot summarizes FNRs (a) and FDRs (b)

across 20 simulation data sets for a fixed ⇢ and graphs with a fixed number of vertices.

9



 10 

2. Analysis Details  
 

2.1 Data Preparation 
 

 

We analyzed multimodal and pan-cancer TCGA data that are publicly accessible. We utilized 

TCGA-Assembler9 to retrieve and process data from TCGA Data Coordinating Center (DCC, 

http://cancergenome.nih.gov/abouttcga/overview/howitworks/datasharingmanagement). TCGA-

Assembler is a software package to automatically download, assemble, and process public 

TCGA data. Using TCGA-Assembler, data retrieval was fully automatic and reproducible. 

 

Multimodal TCGA data were retrieved and processed using TCGA-Assembler from 

TCGA DCC in April 2013, as described below. First, for each cancer type, we downloaded gene 

expression (GE) data generated by RNA-Sequencing, protein expression (PE) data measured by 

Reverse Phase Protein Array (RPPA), copy number (CN) data produced by Affymetrix SNP 

array 6.0, and DNA methylation data measured by Infinium HumanMethylation 450 BeadChip. 

Only tumor samples measured by all four assay platforms were kept for analysis. Second, a mean 

DNA copy number value and a mean DNA methylation value were calculated for each gene in 

each sample using TCGA-Assembler, resulting in gene-level summaries for CN and ME. TCGA 

GE and PE data were already organized by genes. Third, for RNA-Seq data, zero values were 

first replaced with the smallest positive value in the data, and then log2 transformation was taken 

for all RNA-Seq data; for methylation data, we took a transformation of log2(x/(1-x)), where x 

represented an input methylation value. Fourth, each genomic feature was standardized within 

each cancer type, so that it had a zero mean and a unit standard deviation. Fifth, data of different 

cancer types were combined together into a mega table, and any genomic feature with missing 

values in more than 25% of samples over all cancer types was removed. Lastly, we required that 

a gene must have measurements for at least CN, ME, and GE to be included in our analyses; 

otherwise the gene was not included. 

 

In TCGA data, while CN, ME, and GE measurements were available genome-wide, 

measurements of PE by RPPA were available for less than 200 genes, which correspond to 

important cancer-related proteins. As part of quality control, we compared TCGA gene symbols 

http://cancergenome.nih.gov/abouttcga/overview/howitworks/datasharingmanagement
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with the official NCBI gene symbols using the R package HGNChelper10 and corrected obsolete 

and ambiguous gene symbols. Table 1 in the main text and Table S1 here summarize the 1,448 

samples (across 11 cancer types) and the 19,304 genes that were used in the analysis. The 

number of samples for each cancer type varies depending on how many samples from each 

cancer type were profiled by TCGA for all of the four genomics platforms. Kidney renal clear 

cell carcinoma has the largest number of samples, followed by head and neck squamous cell 

carcinoma and lung adenocarcinoma. Table S1 shows the breakdowns of gene numbers by 

available features. Out of the 19,304 genes, 19,172 genes have one measurement for each of CN, 

ME, and GE for the gene, but no PE measurement; 129 genes have PE data, and 28 of them have 

more than one protein expression values; 3 genes have more than one CN measurements due to 

their alternative locations in the genome.  

 
 
      Table S1.    Number of genes with different combination of available measurements. 

Number of CN 
Readouts 

Number of GE 
Readouts 

Number of ME 
Readouts 

Number of PE 
Readouts 

Number of 
Genes 

1 1 1 0 19,172 
1 1 1 1 101 
1 1 1 >1 28 

>1 1 1 0 3 

Total 19,304 
 

 
2.2 Computation 
 

 
We applied the Bayesian graphical models (BGMs)11-12 to each of the 19,304 genes and each of 

the 19,304×19,303/2=186,312,556 possible gene pairs to infer intragenic interactions and 

intergenic interactions. Each gene or gene pair was analyzed as an independent and separate 

computational job using the BGM, resulting in a total of 19,304+186,312,556=186,331,860 

individual computational jobs. On average, each job took about 47 CPU seconds to compute, 

consisting of 10,000 Markov chain Monte Carlo (MCMC) iterations. The whole study including 

all analyses took about 2,432,666 CPU hours. We carried out these computational jobs on Beagle, 

a supercomputer at the Computation Institute of The University of Chicago and the Argonne 
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National Laboratory13. Beagle is a Cray XE6 supercomputer system with 17,424 CPUs, 23TB of 

memory, and 600TB of hard-disk space. The total computation power of Beagle can achieve 150 

teraflops.  

 
 

3. Additional Results 
 

3.1 Summary of Intragenic Interactions and Graphs 
 

 
We summarized the intragenic interactions of individual genes. Only genes with non-zero 

mRNA-seq read counts in more than 50% of the samples were included in summary. A total of 

17,157 genes were kept for result summary after filtering. Table S2 summarizes the numbers of 

genes with different types of significant (FDR ≤ 0.01) intragenic interactions inferred by Zodiac. 

 
 

Table S2    Numbers of genes with significant intragenic interactions. 

Interaction Type Number of Genes with Such Significant 
Intragenic  Interactions  (FDR  ≤  0.01) 

CN-GE 7,904 
ME-GE 1,277 
GE-PE 56 
CN-ME 5,019 
CN-PE 4 
ME-PE 2 

 
 

Next we considered different types of graphs with only three genomics features, CN, GE, 

and ME, as an investigation of transcription co-regulation by copy number variation and DNA 

methylation. There were eight distinct intragenic interaction graphs formed by CN, GE, and ME 

for a single gene, as shown in the first column of Table S3. We calculated the posterior 

probability of each of the eight graphs in the MCMC simulation for each gene, and report the 

mean of these posterior probabilities across all genes (Column 2 of Table S3). The most frequent 

graph is co-existence of CN-GE and ME-GE interactions with a mean posterior probability of 

22.24%, indicating joint regulation of copy number variation and DNA methylation on gene 
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expression. Another type of graph, ME-GE and CN-ME, corresponds to ME-dependent 

regulation on GE (Fig. 2a-i left and Fig. 2b-i in the main text), which may be caused by a copy-

ubiquitous methylation mechanism. This type of graphs consists of 5.85% in Table S3. In 

contrast, CN-dependent regulation indicated by a graph including CN-GE and CN-ME edges 

(Fig. 2a-i right and Fig. 2b-ii in the main text) is more prevalent (16.76% in Table S3).  

 
 

 Table S3    Frequencies of different intragenic interaction graphs 
Graph Type Frequency of Graph Over All Genes 

No Interaction 5.03% 

CN-GE edge only 19.09% 

ME-GE edge only 6.81% 

CN-ME edge only 4.31% 

CN-GE and ME-GE edges 22.24% 

ME-GE and CN-ME edges 5.85% 

CN-GE and CN-ME edges 16.76% 

CN-GE, ME-GE, and CN-ME edges 19.93% 
 

 

3.2 Enrichment of Intergenic Interactions in KEGG Pathways 
 

 
Sixteen cancer-related pathways from the KEGG Pathway database14 were selected for the 

validation of interactions inferred by Zodiac. These pathways belong to three different categories 

including Cancer Overview, Signal Transduction, and Cell Growth and Death (Table S4). 

Genomic interactions in Zodiac were inferred based on integrating data of multiple cancer types. 

Thus they are expected to characterize conserved, common molecular mechanism between 

cancer types. KEGG pathways related to specific cancer types were not included for validation. 

Only genes with non-zero mRNA-seq read counts in more than 50% of the samples were 

included in validation to ensure a high quality validation. A total of 17,157 genes were kept for 

result validation after filtering. Enrichment analyses were conducted for two kinds of genomics 

functions, including transcriptional regulation and protein phosphoregulation.  
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Table S4.    KEGG pathways used for validation of inferred interactions 
Cancer Overview Signal Transduction Cell Growth and Death 

Pathways in cancer 

Transcriptional misregulation in cancer 

Proteoglycans in cancer 

MAPK signaling pathway 

PI3K-Akt signaling pathway 

Notch signaling pathway 

mTOR signaling pathway 

Wnt signaling pathway 

TGF-beta signaling pathway 

ErbB signaling pathway 

VEGF signaling pathway 

Jak-STAT signaling pathway 

NF-kappa B signaling pathway 

Cell cycle 

Apoptosis 

p53 signaling pathway 

 
 
(1) Evidence of transcriptional regulation. In Zodiac, we considered significant (FDR ≤ 0.01) 

intergenic PE-GE and GE-GE interactions as evidence of potential transcriptional regulation. 

The first gene involved in the PE-GE or GE-GE interaction could be transcriptional factor 

and the second gene could be its target gene. There were 17,157×17,156/2 = 147,172,746 

gene pairs with potential PE-GE or GE-GE interactions. Among them, 540 gene pairs had 

transcriptional regulation relations recorded in the selected KEGG pathways. Zodiac inferred 

significant PE-GE or GE-GE interactions between 13,449,210 gene pairs, 114 of which were 

among the 540 gene pairs and have inferred interactions consistent with the transcriptional 

activations  or  repressions  indicated  by  KEGG.  Calculated  using  the  Fisher’s  exact  test  based  

on hypergeometric distribution, the enrichment is statistically significant (P-value 3.24e-17) 

with an enrichment fold of (114/13,449,210)/(540/147,172,746) = 2.31.  

 

(2) Evidence of protein phosphoregulation. In Zodiac, we considered significant (FDR ≤ 0.01) 

intergenic PE-PE(phos) and GE-PE(phos) interactions as evidence indicating protein 

phosphoregulation, in which the first gene promotes or reduces the phosphorylation of the 

protein encoded by the second gene. Only 37 genes in Zodiac had expression values of 

phosphorylated proteins and totally there were 17,156×37 = 634,772 possible gene pairs that 

could possess PE-PE(phos) or GE-PE(phos) interactions. Among these, 234 gene pairs were 
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indicated by the KEGG pathways to have protein phosphoregulation relations. Zodiac 

inferred 6,242 gene pairs with statistically significant PE-PE(phos) or GE-PE(phos) 

interactions, among which 16 gene pairs had interactions consistent with the protein 

phosphorylation or de-phosphorylation relations indicated by KEGG pathways. The 

enrichment is statistically significant (P-value 2.29e-9) with an enrichment fold of 

(16/6,242)/(234/634,772) = 6.95. 

 
 
3.3 Enrichment of Intergenic Interactions in TRED  
 

 
We also assessed intergenic interactions in Zodiac using transcriptional regulations provided by 

the Transcriptional Regulatory Element Database (TRED)15. Significant intergenic PE-GE and 

GE-GE interactions (FDR ≤ 0.01) were considered evidence supporting potential transcription 

factor regulations on genes, where the first gene with PE or GE readout can be a transcription 

factor and the second gene with GE readout is its target gene. A total of 45 cancer-related 

transcription factors and their target genes indicated by TRED were involved in the enrichment 

analysis. Again, we only included 17,157 genes whose mRNA-seq read counts were non-zero in 

more than 50% of the samples. We found significant enrichment between Zodiac and TRED on 

11 transcription factors (TFs) and their targeted genes, with the Fisher’s   exact   test   evaluating  

enrichment significance and a P-value cutoff of 0.01. See Table S5.  

  
 
Table S5   Transcription factors with transcriptional regulations (recorded by TRED) significantly 
enriched in interactions inferred by Zodiac 

Transcription 
Factor (TF) 

Number of genes 
that are TF targets 

(by TRED) and 
have significant 
interactions with 
TF (by Zodiac) 

Number of genes 
that have 
significant 

interactions with 
TF (by Zodiac) 

Number 
of target 
genes of 
TF (by 
TRED) 

Enrichment 
p-Value 

Enrichment 
Fold 

SPI1a 37 3693 47 9.13E-17 3.66 

ETS1 36 3355 75 2.54E-08 2.45 

JUN 13 699 109 4.87E-04 2.93 

ETS2 7 865 30 5.93E-04 4.63 
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CEBPB 6 497 44 1.59E-03 4.71 

EGR1 10 1135 58 4.39E-03 2.61 

POU2F2 7 2470 16 4.40E-03 3.04 

CEBPD 4 821 15 4.65E-03 5.57 

MYC 69 1303 665 4.91E-03 1.37 

ERG 7 2811 15 5.97E-03 2.85 

STAT1 5 1057 22 9.61E-03 3.69 
aWe take SPI1 as an example to show how the enrichment significance and fold are calculated. There are 

totally 17,156 genes with potential significant PE-GE or GE-GE interactions inferred by Zodiac between 

SPI1 and the gene. 47 of these genes are transcriptionally regulated by SPI1 as indicated by TRED. 

Zodiac inferred significant PE-GE or GE-GE interaction between SPI1 and 3693 genes, which includes 

37 out of the 47 genes with TRED recorded transcriptional regulations by SPI1. Using  the  Fisher’s  exact  

test based on hypergeometric distribution, the p-value of the enrichment is 9.13E-17. And the enrichment 

fold is (37/3693)/(47/17,156) = 3.66.    

 
 
3.4 Genes Interacting With EZH2 and E2F1 
 

 
We used Zodiac to identify the genes that had significant GE-GE interactions with EZH2. There 

were 644 genes (FDR ≤ 0.01) and Table S6 summarizes the top 40 genes positively interacting 

with EZH2 sorted by the posterior mean of strength coefficient β (see SI Bayesian Graphical 

Models).  

 

Fig. S3 uses a Circos plot16 to show the significant (FDR ≤ 0.01) intergenic interactions 

between E2F1, CCNE1, CCNA2, CDC6, DHFR, and TK1. It can be seen that E2F1 is connected 

to all other genes through significant GE-GE edges, which supports the notion that the other 

genes are potential downstream targets of E2F117. 
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Table S6  Top 40 genes with significant strong positive GE-GE interactions with EZH2 
Gene Symbol Posterior Mean of β  Gene Symbol Posterior Mean of β 

HIST1H2BH 15.92175  CDC6 9.62499 

LEFTY1 14.64688  KIF14 9.60699 

KDM3A 11.16383  MCM10 9.56511 

MTIF2 10.92703  DLGAP5 9.50962 

NEURL 10.71264  NCAPG2 9.48744 

SKP2 10.49488  KIF4A 9.46784 

TBC1D31 10.49417  NUSAP1 9.46527 

SCLT1 10.45962  RAD51 9.45719 

NEK2 10.31364  POLQ 9.444 

FASTKD1 10.20907  WDR62 9.39296 

CDT1 10.17701  CCNA2 9.39158 

HELLS 10.15806  SPC25 9.36061 

KIF15 10.14204  FOXM1 9.3148 

XRCC2 9.93363  SASS6 9.29762 

CENPE 9.78229  VASH2 9.29377 

MCM8 9.76895  KIFC1 9.2771 

CENPA 9.72743  CCNF 9.2743 

HMMR 9.71635  CDCA5 9.26555 

BUB1B 9.6758  BLM 9.26354 

SKA3 9.64015  KIF2C 9.24806 
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Figure S3    Significant (FDR ≤ 0.01) intergenic interactions between E2F1, CCNE1, CCNA2, 

CDC6, DHFR, and TK1. Green lines indicate positive interactions and red lines indicate negative 

interactions. 

 
 
 
3.5 Example of Data-enhanced Network Inference 
 

 
We selected a signaling cascade from the KEGG prostate cancer pathway as an example to 

demonstrate using BGM software and TCGA data for examining existing knowledge about 

genomic interactions and producing data-enhanced network inference. The selected signaling 

cascade includes 6 steps as indicated by Fig. 3a in the main text.   

Step 1: SOS converts Ras into its active conformation. 

Step 2: Ras activates Raf. 

Step 3: Phosphorylated Raf activates MEK. 
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Step 4: MEK phosphorylates and activates ERK. 

Step 5: ERK indirectly interacts with Androgen Receptor (AR). 

Step 6: AR acts as a transcription factor and activates the transcription of KLK3, whose protein 
product is PSA. 

 
We used TCGA-Assembler9 to retrieve and preprocess TCGA prostate cancer data and 

obtained 162 samples measured for both gene expressions and protein expressions. For the 

simplicity of analysis, one measurement feature was selected to represent each of the nodes 

involved in the signaling cascade (see Fig. 3a in the main text). For SOS, we used the GE of 

SOS1, as TCGA does not provide PE of SOS1. For Ras, we used PE of NRAS. For Raf, we used 

PE of RAF1 with Ser338 phosphorylation. For MEK, we used PE of MAP2K1 with Ser217 and 

Ser221 phosphorylations. For ERK, PE of MAPK1 with Thr202 and Tyr204 phosphorylations 

was used. For androgen receptor and PSA, we used PE of AR and GE of KLK3, respectively. 

Thus, the data involved in analysis include 162 samples and 7 features. The prior network used 

in analysis was a single thread cascade of SOS1-NRAS-RAF1-MAP2K1-MAPK1-AR-KLK3. And 

the parameter ρ controlling the strength of prior network was set at 0.1. 

 
 

Table S7    Posterior probabilities of all potential interactions between the selected features 

Measurement 
Feature 

NRAS 
(PE) 

RAF1 
(PE, Ser338) 

MAP2K1 
(PE, Ser217 
and Ser221) 

MAPK1 
(PE, Thr202 
and Tyr204) 

AR 
(PE) 

KLK3 
(GE) 

SOS1 (GE) 0.94 0.09 0.05 0.05 0.07 0.06 

NRAS (PE)  1.00 0.04 0.04 0.07 0.05 

RAF1 (PE, Ser338)   0.80 0.05 0.07 0.06 

MAP2K1 (PE, 
Ser217 and Ser221)    1.00 0.08 0.05 

MAPK1 (PE, 
Thr202 and Tyr204)     0.89 0.04 

AR (PE)      0.95 
Bold font indicates relatively high posterior probabilities with posterior FDR ≤ 0.1 if all the edges are 

selected.  

 
 

Table S7 gives the posterior probabilities inferred by BGM for all potential edges 

between the selected measurement features. Clearly, only edges representing interactions in the 
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prostate cancer pathway signaling cascade (Fig 3.a in the main text) have high posterior 

probabilities (≥ 0.75) compared to all other potential edges, which are indicated by bold font in 

Table S7. This means the posterior inference network is consistent with existing knowledge 

about this signaling transduction mechanism. Also, all interactions in this posterior inference 

network are positive, which is consistent with existing understanding about the pathway, except 

the interaction between MAPK1 (PE, Thr202 and Tyr204) and AR (PE), which according to 

KEGG is an indirect effect. 

 
 
4 Web Server and Interface 
 

 
Zodiac allows investigators to query and view the evidence for inferred interactions through web 

browser. Currently, four query procedures are available. 

 
(1) The first procedure focuses on interactions of other genes to a single gene of interest, a 

one-versus-rest query. In the search box of Zodiac users input one gene symbol and 

Zodiac returns all significant intergenic interactions with this gene (Fig. 4b in the main 

text). Such a query procedure is particularly useful for identifying important genes that 

interact with the input gene. Details about specific interaction types and lists of the 

strongest interactions can be viewed by clicking on hyperlinks within the result table. 

(2) The second query procedure is a query of significant intragenic interactions for a single 

gene. This procedure is initiated by entering the same gene symbol twice and returns the 

intragenic interactions of that gene (Fig. 4c in the main text). 

(3) The third query procedure deals a pair of genes. Users enter two different gene symbols 

and Zodiac displays the interaction network between all features of the two genes (Fig. 

4d in the main text). 

(4) The fourth procedure allows users to enter multiple gene symbols and returns a Circos 

plot16 showing all significant intergenic interactions between input genes, which are a 

collection of all significant intergenic interactions obtained by pair-wise analyses. 
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In the first three query procedures, the input gene symbols are validated using a gene list 

including gene IDs, symbols, and aliases obtained from NCBI18. If there is an error or ambiguity 

in the input gene symbol(s), the user is prompted to choose their desired gene from a list of 

relevant genes. Alternative gene symbols and descriptions of genes are provided to help in the 

selection. Gene symbol is shown with a hyperlink to its NCBI webpage that provides a detailed 

description of the gene. The result webpage also provides a link to download the graphs and 

inference statistics from the current query for additional analysis off-line. In the multi-gene query, 

unrecognized gene symbols that are not uniquely identifiable are ignored for drawing the graph 

and are listed below it.  See details in the online Zodiac Tutorial 

(http://www.compgenome.org/TCGA/tutorial.html). 

 

We also provide Application Programming Interfaces (APIs) that allow users to send a 

URL request to the Zodiac server for direct visualization of network inference results without 

performing the step of entering gene symbols or IDs. Using the APIs, developers can hyperlink 

from outside programs to directly access Zodiac interaction networks. For the first query 

procedure (one gene versus the rest), the URL request reads as 

http://www.compgenome.org/ZODIAC?Gene_List=GeneID 

where GeneID in the URL should be replaced by the NCBI gene symbol or ID of the gene in 

query. For all other query procedures (e.g. gene pair and multi-gene), the URL request is  

http://www.compgenome.org/ZODIAC?Gene_List=GeneID+GeneID... 

where …   represents  that  more  gene  symbols  or  IDs  with  ‘+’  for  delimitation  can  be  added  to  the  

end of the URL.  

 
 

  

http://www.compgenome.org/TCGA/tutorial.html


 22 

References 
 

1. Mitra, R., Müller, P., Liang, S., Yue, L. & Ji, Y. A bayesian graphical model for chip-seq data on 

histone modifications. Journal of the American Statistical Association 108, 69–80 (2013). 

2. Havard, R. & Leonard, R. Gaussian Markov random fields: theory and applications (CRC Press, 

Boca Raton, FL USA, 2005). 

3. Parmigiani, G., Garrett, E., Anbazhagan, R. & Gabrielson, E. A statistical framework for 

expression-based molecular classification in cancer. Journal of the Royal Statistical Society: 

Series B 64, 717–736 (2002). 

4. Besag, J. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal 

Statistical Society: Series B 192–236 (1974). 

5. Caragea, P. & Kaiser, M. Autologistic models with interpretable parameters. Journal of Agri- 

cultural, Biological, and Environmental Statistics 14, 281–300 (2009). 

6. Hughes, J., Haran, M. & Caragea, P.C. Autologistic models for binary data on a lattice. Envi- 

ronmetrics 22, 857–871 (2011). 

7. Newton, M.A., Noueiry, A., Sarkar, D. & Ahlquist, P. Detecting differential gene expression with 

a semiparametric hierarchical mixture method. Biostatistics 5, 155–176 (2004). 

8. Müller, P., Parmigiani, G., Robert, C. & Rousseau, J. Optimal sample size for multiple testing. 

Journal of the American Statistical Association 99, 990–1001 (2004). 

9. Zhu, Y., Qiu, P. & Ji, Y. TCGA-Assembler: open-source software for retrieving and processing 

TCGA data. Nature Methods 11(6), 599-600 (2014). 

10. R package HGNChelper, http://cran.r-project.org/package=HGNChelper. 

11. Mitra, R., Müller, P., Liang, S., Yue, L. & Ji, Y. A Bayesian graphical model for ChIP-Seq data 

on histone modifications. Journal of the American Statistical Association 108, 69–80 (2013). 

12. Xu, Y. et al. in IEEE International Workshop on Genomic Signal Processing and Statistics 

(GENSIPS) 135–138 (Washington, DC, USA; 2012). 

13. Supercomputer Beagle, http://beagle.ci.uchicago.edu. 



 23 

14. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and 

interpretation of large-scale molecular data sets. Nucleic Acids Research 40, D109-114 (2012). 

15. Jiang, C., Xuan, Z., Zhao, F. & Zhang, M. TRED: a transcriptional regulatory element database, 

new entries and other development. Nucleic Acids Research 35, 40 (2007). 

16. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome 

Research 19, 1639-1645 (2009). 

17. Bracken, A. et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and 

amplified in cancer. The EMBO Journal 22, 5323-5335 (2003). 

18. ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz, 

accessed 8/13/2013. 


	Section1.pdf
	Bayesian Graphical Models (BGM)
	Introduction of Graphical Models
	Methods
	Probability Model
	Markov Chain Monte Carlo Simulations
	Posterior Inference Using False Discovery Rates

	Simulation Study
	A Small Study
	A Large Study
	Comparison to Partial Correlation



	Section2,3,4.pdf

